
 

ENGNG.RES.JOUR.,VOL 99, PP.C 22-C 41, JUNE 2005 
HELWAN UNIVESITY, FACULTY OF ENGNG., MATARIA, CAIRO 

 

DESIGN SYNTHESIS FOR SINGLE- AND MULTI-
BAY STEEL FRAMES ACCORDING TO ECP� 01 

 
O. KAMAL∗∗∗∗, O. EL-MAHDY∗∗∗∗∗∗∗∗, and G. EL-KOMY ∗∗∗∗∗∗∗∗∗∗∗∗ 

∗Professor, ∗∗Associate Professor, ∗∗∗Engineer 

Faculty of Engineering at Shoubra, Banha University, Cairo, Egypt 
 
 

ABSTRACT 
 
Minimum weight design of single-and multi-bay steel portal frames is presented. 
The design variables are the dimensions of prismatic built-up sections for beams 
and columns. Design constraints are considered as per ECP� 01: shape, buckling, 
stresses, and deflection constraints. Both compact and non-compact sections are 
included in the formulation. Cases of loading comprise vertical and lateral loads. 
Analysis is done using Displacement Stiffness Method. An optimization 
technique based on the Method of Feasible Directions -through an implicit 
formulation– is adopted. Several examples are presented in order to assess the 
advantages of adopting optimization in structural steel design as compared to 
other classical design approaches. 
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1. INTRODUCTION 
 
Portal frames are one of the most important structures in the family of steel 
industrial buildings. Consequently, the minimization of the design weight had 
been a legitimate goal for the designers and researchers for the last few decades. 
Camp et al. [1] developed an Ant Colony Optimization (ACO) technique for 
discrete optimization of steel frames. The constraints considered were the 
serviceability and strength requirements as specified by AISC-LRFD. 
Optimization of steel frames under seismic loading was studied by Moharramy 
and Alavinasab [2]. The constraints included limits on stresses, deflections, side 
sways, inter-story drifts and upper and lower bounds on member sizes according 
to AISC-ASD. Sarma and Adeli [3] created discrete multi-criteria optimization 
model for design of large steel structures. The model was used to perform a 
comparative study of optimum design of steel high-rise building structures using 
AISC-ASD and AISC-LRFD. Schinler [4] developed an optimization algorithm 
to design fully restrained and partially restrained steel frames. He selected an 
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evolutionary algorithm to stochastically guide the algorithm through the solution 
space of available designs and arrive at an evolved frame. A method of advanced 
analysis was used to assess the adequacy of the steel frames in lieu of design 
specification and code requirements.  Pezeshk et al. [5] presented a genetic 
algorithm-based optimization procedure for design of nonlinear steel frames. 
They used the genetic algorithms as a tool to achieve discrete nonlinear optimal 
or near-optimal designs in accordance with the requirements of the AISC-LRFD 
specification. Saadoun and Arora [6] described a practical formulation for 
optimum design of framed structures under multiple loading and constraint 
conditions. An interactive software system for AISC code limits on element 
stresses, member maximum deflection, stability and slenderness ratios, width 
thickness ratio, and nodal displacements were imposed in the design process. 
 
This research aims at developing an efficient optimization formulation for single 
-and multi-bay steel portal frames according to the latest version of the Egyptian 
Code of Practice for steel construction ECP� 01 [7]. In order to optimize a wide 
spectrum of frames, the Displacement Stiffness Method for structural analysis [8] 
is used as an appropriate analysis tool. The argument remains valid for the 
Method of Feasible Directions (MFD) optimization technique [9]. The algorithm 
is based on an implicit optimization formulation. It is equally applicable for 
compact and non-compact built-up prismatic sections. The next sections outline 
the optimization formulation, case studies, discussion, and the conclusions. 
 

2. OPTIMIZATION PROBLEM 
 
In this work, a generalized Displacement Stiffness Method is applied for both 
compact and non-compact sections. The input data include geometrical 
dimensions, support conditions, different cases of loading, and load 
combinations. The design variables are the cross-sectional dimensions, which 
include the web height and thickness as well as the flange width and thickness 
for each cross-section (see Fig. 1). The results include the optimized dimensions 
for each case of loading, value and location of maximum displacements, and 
frame weight for all iterations. The straining actions are computed for each joint 
of the member that has the same cross-section and then the maximum straining 
actions are utilized in the formulation. The optimization formulations for 
compact and non-compact sections are summarized hereafter. 
 
Compact Sections 
 
The constraints of compact sections according to ECP’01 may be divided into 
four groups: shape constraints (Eqs. 2-3), buckling constraints (Eqs. 4-7), stress 
constraints (Eqs. 8-9), and deflection constraints (Eqs. 10-11). It should be noted  
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Fig. 1. Cross-Section Design Variables 

 
that some of these constraints are applied at the cross-section level such as Eqs. 
(2, 3, 4, 8, and 9) while other constraints are applied at the member level such as 
Eqs. (5, 6, and 7). The constraints given by Equations 10 and 11 are applied at 
the overall frame structure level. The code equations can be re-written in the 
following optimization formulation: 
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si

n

1
it LAW γ××=�  (1) 

 
Subject to: 
 

0
1- 13

/699

t
d

≤−
α

y

w

w
F

              for    5.0>α  

or 

0
/6.63

t
d ≤−

yw

w

F
α

                  for    5.0≤α  

 
 
 
 

(2) 

0
F

3.15
t
C

yf

≤−  (3) 

0
105

t
≤−

yw F

d
 (4) 

0
F

b20
L

y

f
u ≤−  (5) 

0C
hF

A1380
L b

y

f
u ≤−  (6) 

0180 �max ≤−  (7) 

h d dw 

tw 

bf 

tf 



                                                             C - 25 -

00.1A
F
f

F
f

1
bcx

bcx

c

ca ≤−+  (8) 

0max ≤− b
w

q
dt

Q  (9) 

0
300

L
v ≤−δ  (10) 

0
150
H

H ≤−δ  (11) 

100000t,b,t,h0 ffww ≤≤  (12) 
 
It should be mentioned here that all steel sections are designed as column-beam 
element and the webs of the sections are considered as unstiffened webs. Figure 
(2) shows the flowchart for the generation of constraints for the case of compact 
sections as per ECP’01. 

It is worthwhile noting that the buckling length factor ‘K’ for unbraced frames, 
which is given by the Eq. (13) is automatically generating in the program, rather 
using the alignment chart given in the code[10]. 
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Lateral Torsional buckling  
 
When the compression flange is braced laterally at intervals exceeding Lu that 
defined by Eqs. (5 and/or 6), the allowable bending stresses in compression, Fbc, 
will be taken as the larger value from the following equations: 
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Alternatively, the more accurate value of lateral torsional buckling stress may be 
computed as follows: 
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Non-compact sections 
 
In the case of non-compact section, according to ECP’01, Equations 2 and 3 will 
be: 
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The previous equations can be re-written in the following optimization 
formulation:  
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Fig. 2. Flowchart for Generation of Constraints for Compact Sections 
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Fig. 2. Flowchart for Generation of Constraints for Compact Sections (Contd.) 
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Fig. 2. Flowchart for Generation of Constraints for Compact Sections (Contd.) 
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Fig. 2. Flowchart for Generation of Constraints for Compact Sections (Concluded) 
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3. APPLICATIONS AND CASE STUDIES 

 
Four examples of steel frame structures are presented. The examined frames have 
spans of 2200, 2400 and 2500 cms. Different support conditions are included. 
Single and multi-bay frames with normal mild steel and high tensile steel are 
investigated. 
 

Example 1 
This frame is a two-hinged frame given in reference [11]. The span of the frame 
L is 2200 cm, the height H is 600 cm, and the angle of inclination φ �of the rafter 
is 5.7o (refer to Fig. 3). Steel grade is normal mild steel (24/37) and the live and 
wind loads are considered according to ECP’93 [12]. The design of the frame is 
done using a classical approach, which gives prismatic hot-rolled cross-sections 
(B.F.I.B. No. 28) and frame weight of 3.84 tons. 
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Fig. 3. Layout of Frame for Example 1 
 

To describe the advantages of optimum design as compared to above-mentioned 
classical approach, the frame is investigated using the algorithm of compact sections. 
An optimum weight of 2 tons is obtained after 595 iterations and five seconds, with an 
improvement of 48%. In order to demonstrate the efficiency of the implicit formulation, 
three other different starting points with weights 321.3, 80.3 and, 26.77 tons are studied. 
A minimum weight of 2 tons is reached after 595, 405, and 479 iterations, respectively. 
Table (1) gives the starting and final optimal cross-sectional dimensions for these 
starting points. The iteration histories for the objective functions are shown in Fig. (4). 
The shape constraints, combined stresses for both column and rafter (Eqs. 2, 3, 4 and 8) 
are the active constraints. Whereas, the lateral buckling constraint of Eq. (6) is 
deactivated due to the oscillation that occurs when it is activated. In any case, this 
constraint is not active at optimally. 

Table 1. Design History for Example 1 
 

Cross-Sectional  Dimensions (cm) 

Starting Final Section 
Type 

Starting 
Point 
No. 

tw hw tf bf tw hw tf bf 

(1) 20 200 20 200 0.7 48.7 1.0 21.2 

(2) 10 100 10 100 0.7 48.6 1.0 21.3 

C
ol

um
n 

(3) 5 100 5 50 0.7 46.6 1.0 22.0 

(1) 20 200 20 200 0.8 53.8 0.8 19.1 

(2) 10 100 10 100 0.8 52.3 0.9 19.7 

R
af

te
r 

(3) 5 100 5 50 0.8 52.4 0.9 19.5 

All dimensions are in cms 
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Fig. 4. Iteration History for Example 1 

 

 

Example 2 
The 2200 cm span frame analyzed previously in Example (1) is optimized again 
using the algorithm for non-compact sections. Starting with an overdesign of 8 
tons as a starting point, an optimum weight of 1.57 tons is obtained after 144 
iterations and three seconds. Shape, combined stresses, and vertical deflection 
given by Eqs. (22, 23, 24, 26, and 28) are still the active constraints. The starting 
and final optimal sectional dimensions are given in Table (2).  The iteration 
history is shown in Fig. (5). 
 

Table 2. Design History for Example 2 
 

Cross-Sectional  Dimensions (cm) 

Starting Final Section Type 

tw hw tf bf tw hw tf bf 

Column 4 80 4 80 0.50 61.32 0.70 21.17 

Rafter 4 80 4 80 0.50 67.09 0.68 18.11 
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Fig. 5. Iteration History for Example 2 

 
Example 3 
To show the robustness of the present formulation, this example is chosen from 
previous work conducted by other researchers. The pitched roof frame given in 
Ref. [13] is selected for this demonstration. The fixed frame span L is 2400 cms, 
the height H is 600 cms, and angle of rafter slope is 11.3�. It consists of tapered I-
section members with constant flange width, flange thickness and web thickness. 
The frame is subjected to a vertical live load 2 t/m and steel grade 44 is used (see 
Fig. 6). 

 
Fig. 6. Layout of Frame for Example 3 
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In the cited reference, an algorithm based on an optimality criteria technique is 
used. The web height is considered as a unique design variable to avoid the 
calculation of large sets of Lagrange Multipliers. The tapered member is 
designed according to LRFD [14], and then the method is modified and 
developed according to the ECP’89 [15]. 

 
 
 

 
 

Fig. 7. Section Results for Frame of Example 3 
 
The displacements at joints and combined axial and flexural strength are taken as 
constraints. Moreover, the deflection constraint is modified – in the cited - to 
L/160 (Eq. 10 or 28 in this work). A total weight of 4.25 tons is obtained. Under 
the same conditions, loads and ECP� 89 code, and using an unrealistic starting 
point with total weight of 42.49 tons, but utilizing prismatic members, a 
minimum weight of 4.33 tons is obtained after 170 iterations, which is 1.8 % 
greater than that given in the cited reference using tapered members. According 
to the optimization results, the combined stresses constraint is dominant in the 
design (Eq. 26 in this work). This is due to the excessive live load and the rafter 
steep inclination of the investigated frame. Another starting point is used and the 
results are presented in Table (3) and Fig. ( 8 ). The frame is re-optimized 
according to ECP’01 and the same results are obtained. 
 
It should be mentioned here that ECP’89 – which is used to solve this example in 
the stated reference - and the latest code version ECP’01 are different in the 
shape and buckling constraints. However, the combined stresses constraint is the 
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Table 3. Design History for Example 3 
 

Cross-Sectional  Dimensions (cm) 

Starting Final Section 
Type 

Starting 
Point 
No. 

tw hw tf bf tw hw tf bf 

(1) 5 100 5 100 0.50 91.41 2.15 38.55 
Column 

(2) 1.5 80 2 50 0.50 72.84 1.42 45.89 

(1) 5 100 5 100 0.50 118.44 1.28 24.30 
Rafter 

(2) 1.5 80 2 50 0.50 111.76 1.23 31.09 
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Fig. 8. Iteration History for Example 3 
 

same in both versions of the code. Shape constraints are not taken into 
consideration in this example and buckling constraints do not affect the optimal 
design. The same final weight is therefore, obtained when the frame is 
redesigned according to ECP’ 01. 
 
Example 4 
 
Figure 9 shows a two gable-pitched frame with fixed bases. This frame is 
constructed in Dahran Airport, Kingdom of Saudi Arabia. The span L of each bay 
is 2500 cms, the height H is 800 cms, and the inclination of the rafter was 1:10. 
The frame is designed with prismatic columns and tapered rafters loads are 
considered according to ECP’01. High strength steel (36/52) is used. The 
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Fig. 10. Section Results for Example 4 
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dimensions of the built-up sections are shown in the figure. Both outer and 
intermediate columns have the same cross-sections. The total weight of the 
constructed frame is 3.65 tons. 

Using three starting points of weights 46.63, 24.8, and 6.41 tons, and considering 
the case of loading in which one bay is loaded by total loads, and the second bay 
is loaded by dead load only, an optimal solution of 3.78 tons is obtained. In this 
solution, different cross-sections are used for outer columns, intermediate column 
and rafters. The dimensions of these sections are shown in Fig. (9). The active 
constraints are shape constraints and combined stresses for outer columns and 
rafters (Eqs. 22, 23, 24, and 26), lateral buckling constraint for intermediate 
column (Eq. 25), and vertical deflection (Eq. 28). The calculated results are 
presented in Table (4) and Fig. (10). Iteration histories are shown in Fig. (11), the 
case where the two bays are subject to dead and live loads is also considered, a 
minimum weight of 3.52 tons is obtained. Fig. (11) represents the final sections 
dimensions for this case. 
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Fig. 9. Layout of Frame for Example 4 
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Cross-Sectional  Dimensions (cm) 

Starting Final Constructed frame 

Se
ct
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T
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e 
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g 
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t N

o 
N

o.
 

tw hw tf bf tw hw tf bf tw hw tf bf 

(1) 10 100 10 100 0.63 63.07 0.61 15.77 

(2) 2 90 3 40 0.63 63.07 0.61 15.77 

E
dg

e 
C

ol
um

ns
 

(3) 1 50 2 15 0.63 62.80 0.61 15.76 

0.6 60 0.8 22 

(1) 10 100 10 100 0.66 66.18 0.70 17.98 

(2) 2 90 3 40 0.66 66.18 0.70 17.98 
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(3) 1 50 2 15 0.68 67.79 0.84 12.13 
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Fig. 11. Iteration History for Example 4 
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4. CONCLUSIONS 
 
An efficient algorithm is developed for design synthesis of single- and multi-bay 
steel frames subject to vertical and lateral loads. In this work, the frames are 
analyzed using the Displacement Stiffness Method. The optimization technique 
based on the Method of Feasible Directions – through an implicit formulation - is 
adopted. The design variables are the dimensions of prismatic built-up sections 
for beams and columns. All ECP’01 constraints for shape, buckling, stresses, and 
deformations are incorporated. Both compact and non-compact sections are 
included in the formulation. The objective function is represented by the total 
weight of the frame. Four examples are presented to demonstrate the robustness 
and validity of the formulation. The obtained results show the efficiency, 
practicality, and versatility of the adopted optimization over other classical 
design approaches. 
 
NOTATIONS 
The following symbols are used in this work: 
Af  Cross-sectional area of flange� 
bf   Total flange width of the section. 
C   Outstanding flange width. 
Cb   Code coefficient, ECP’01, Eq. (2.28) & Table (2.2). 
dw   Total height of the web. 
f   Difference of frame height at column and at mid-span (ridge)� 
fbcx   Actual compressive bending stress based on moments about x-axis. 
fcax   Actual compressive stress due to axial compression. 
Fc   Allowable stress in axial compression. 

Sec.(2) 
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Flange 18×0.9 
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Flange 23×1.3 
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Fig. 12. Section Results for Example 4 
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Fcb   Allowable stress in bending. 
FE   Euler stress. 
FM,FMMAX Bending moment and maximum bending moment. 
FN,FNMAX Normal force and maximum normal force. 
FQ,FQMAX Shear force and maximum shear force. 
Fltb1, Fltb2  Lateral torsional buckling stress. 
FY   Yield stress of steel. 
h   Total height of section. 
H   Column height. 
ISEC   Number of a section. 
Kb   Buckling length factor. 
Kq   Buckling factor for shear. 
L   Frame span. 
Lu   Effective laterally unsupported length of the compression flange. 
MEMN  Number of a member. 
NM   Number of members of frame. 
NS   Number of sections of frame. 
Qmax   Maximum shear force. 
qb   Buckling shear stresses. 
rT   Radius of gyration about minor axis of section comprising flange 

plus sixth of the web area. 
S   Rafter length. 
Sw   Size of weld. 
Sp   Spacing between purlins. 
tw   Thickness of web. 
Wt   Total weight of frame� 
α1, α2   Code factor, ECP’01, Table 2.1a. 
γs   Specific weight of steel. 
λq   Web slenderness parameter. 
λmax   Maximum slenderness ratio. 
δ , δV   Maximum vertical deflection due to live load. 
δH   Maximum horizontal deflection due to live load. 
�� � � Slope angle of the rafter. 
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